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Abstract. The theory and methods of signal processing are becoming increasingly important in molecular 

biology. Digital filtering techniques, transform domain methods, and Markov models have played important 

roles in gene identification, biological sequence analysis, and alignment. This paper contains a brief review 

of molecular biology, followed by a review of the appHcations of signal processing theory. This includes the 

problem of gene finding using digital filtering, and the use of transform domain methods in the study of 

protein binding spots. The relatively new topic of noncoding genes, and the associated problem of identifying 

ncRNA buried in DNA sequences are also described. This includes a discussion of hidden Markov models 

and context free grammars. Several new directions in genomic signal processing are briefly outlined in the 

end. 
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1. INTRODUCrrON 

Subsequent to the sensational announcement of the double helix structure for the DNA molecule more than 

fifty years ago [1], there has been phenomenal progress in genomics in the last five decades. With the enor- 

mous amount of genomic and proteomic data available to us in the public domain, it is becoming increasingly 

important to be able to process this information in ways that are useful to humankind. Traditional as well as 

modern signal processing methods have played an important role in these fields. Genomic signal processing 

is primarily the processing of DNA sequences, RNA sequences, and proteins. A DNA sequence is made from 

an alphabet of four elements, namely A, T, C, and G. For example 

...ATCCCAAGTATAAGAAGTA... 

The letters A,T,C,G represent molecules called nuclotides or bases (to be described soon). Since DNA 

contains the genetic information of living organisms, we see that life is governed by quarternary codes. 

^Work supported in part by the ONR grant N00014-99-1-1002. 
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Another example of discrete-alphabet sequences in life forms is the protein. A large number of functions in 

living organisms are governed by proteins. A protein can be regarded as a sequence of amino acids. There 

are twenty distinct amino acids, and so a protein can be regarded as a sequence defined on an alphabet of 

size twenty. The twenty letters used to denote the amino acids are the letters from the English alphabet 

except B,J,0,U,X, and Z. For example a part of the protein sequence could be 

. ..PPVACATDEEDAFGGAYPQ... 

Notice that some letters representing amino acids are identical to some letters representing bases. For 

example the A in the DNA is a base called adenine, and the A in the protein is an amino acid called alanine. 

If we assign ntimerical values to the four letters in the DNA sequence, we can perform a number of signal 

processing operations such as Fourier transformation [26,3], digital filtering [27], time-frequency plots such 

as wavelet transformations [17], and Markov modelhng [4]. Some of those are quite interesting and in fact 

have important practical applications. Similarly, once we assign numerical values to the twenty amino acids 

in protein sequences we can do useful signal processing. 

Scope and outline 

This magazine article is meant only to be an introduction. The aim here is to present a big picture with 

appropriate background information. The field is quite mature, and the reader with serious interest should 

pursue some of the references cited at the end of this article. For convenience the references are categorized 

by topic. 

Sections 2—5 contain brief but important background material on DNA and proteins sequences. In Sec. 

6 we explain how Fourier techniques have played a role in gene identification and protein analysis. Section 7 

explains the role of hidden Markov models in molecular biology. We then discuss in Sec. 8 noncoding genes 

which have been increasingly recognized for their important role in nearly all life forms. A brief overview of 

issues involved in computational identification of noncoding genes is also presented. We conclude the paper 

with further remarks on topics of recent interest. Overviews of some of the important aspects of genomic 

signal processing can be found in the introductory magazine-article by Anastassiou [3] and in a recent journal 

article [8]. 

2. SOME FUNDAMENTALS 

Figure 1(a) shows a schematic for the DNA (deoxyribo nucleic acid) molecule. This is in the form of a double 

helix. The discovery of this double hehx is one of the landmarks of molecular biology (for detailed story, see 

Box Bl). Between the two strands of the backbone which is outside, there are pairs of bases like the nmgs 

of a ladder. The backbone is a very regular structure made from sugar-phosphate. There are four types of 



bases (or nucleotides), denoted with the letters A, C, G, and T (respectively, adenine, cytosine, guanine, and 

thymine). For completeness, the internal atomic details of the molecules A,T,C, and G are shown in Fig. 

2. These molecules are made from carbon, nitrogen, hydrogen and oxygen atoms. There are about three 

biUion of these bases in the DNA of a single human cell (Fig. 3). 

In Fig. 1(b) the double helix is shown straightened out for simplicity. The genome sequence corresponding 

to the top strand of the DNA molecule in this example is AGACTGAA. Note that the ordering is from the 

so-called 5' to the 3' end (left to right). DNA sequences are typically listed from the 5' to the 3' end because 

they are scanned in that direction when bases are used by the cell machinery to signal the production of 

amino acids. The reason for directed flow arises from the way the sugar and phosphate are glued together 

(Fig. 1(c)). In the double stranded DNA, the base A always pairs with T, and C pairs with G. Thus the 

bottom strand TCTGACTT is the complement of the top strand. This base-pairing occurs through a weak 

bond called the hydrogen bond [2] but because there are several million base pairs, the two strands are held 

together strongly. Typically in any given region of the DNA molecule, at most one of the two strands is 

active in gene expression (Sec. 3). 
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Figure 1. (a) The DNA double helix, (b) linearized schematic, and (c) details of the the sugar-phosphate backbone. 
In part (b) bottom strand is complementary to the top strand in the sense that A and T are paired and so are C and 
G. This is because of a weak bonding called hydrogen bonding between these pairs of molecules. 

Single-celled organisms like bacteria do not have a nucleus and the DNA just resides in the cell. Such cells 

are called procaryotes; higher organisms (worms, insects, plants, mammals, ...) have cells with nucleus ajid 



are called eucaryotes. These have the DNA residing in the nucleus. An exception is the red blood cell which 

has no nucleus. Cells also have a small quantity of DNA in the mitochondria; we shall not discuss this here. 
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Figure 2. Internal atomic details of the bases adenine, thymine, guanine, and cytosine. These molecules axe made 
from carbon, hydrogen, oxygen and nitrogen (hence called nitrogenous bases). Note that A and G have two rings 
and are called purines. The molecules C and T have one ring and are called pyramidines. 
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Figure 3. A feeling for sizes... The DNA in the nucleus of a single human cell is about 3 billion bases long (and 
is organized into 46 chromosomes). For typical bacteria the DNA is about 4 million bases long. If the DNA in a 
human cell is stretched out like a piece of string, it stretches out to 2 yards! If we put together all DNA in all the 
(5 trillion) cells in an average human, the length is suiBcient to cover the distance from earth to the Sun (93 million 
miles), about 50 times. If we were to write down each base using normal letter size, the DNA in a single human 
cell would fill about 2000 novels. If the three billion bases in a human genome are stored digitially using two bits to 
code each base location (of four possible bases), the total is 6 billion bits or equivalently 750 Mega bytes (roughly the 
capacity of a standard CD). A typical cell nucleus which is one hundredth of a millimeter across can store as much 
information as does a CD! 

The RNA (ribo nucleic acid) molecule is closely related to the DNA. It is also made of four bases but instead 

of thymine, a molecule called uracil is used (denoted as 17).  The sugar in the sugar-phosphate backbone 



is aJso slightly different but we do not require the details here. The important fact is that U pairs with 

A by hydrogen bonding just like T pairs with A. RNA molecules are short (and typically short-hved) 

single-stranded molecules which are used by the cell as temporary copies of portions of DNA (Sec. 3). 

3. GENES AND DNA 

A DNA sequence can be separated into two types of regions: genes and intergenic spaces. Genes contain the 

information for generation of proteins. Each gene is responsible for the production of a different protein as 

shown schematically in Fig. 4. Even though all the cells in an organism have identical genes, only a selected 

subset is active in any particular family of cells. For example the set of genes that are active in blood cells 

are different from those that are active in nerve cells, which explains why these cells look so different! See 

Fig. 5. 

protein 1 protein 2 protein 3 

Figure 4. Genes are parts of the DNA sequence, and are responsible for the production of proteins. According to 
classical view (central dogma of biology) each gene produces a specific protein. See text. 

brain cell red blood cells 

Figure 5. Brain cells and red blood cells. Cells look very diflFerent from esich other because of the different sets of 
genes expressed in them. See www-biology.ucsd.edu/news/article_112901.html and www.cellsalive.com/ gallery.htm 
for real micrographs. 

Figure 6 shows some of the steps involved in the production of a protein from a gene. Notice that a gene has 

two types of subregions called the exons and introns (procaryotes like bacteria do not have introns).^ The 

gene is first copied into a single stranded chain called the messenger RNA or mRNA molecule. The introns 

are then removed from the mRNA by a process called splicing. The spKced mRNA is then used by a large 

molecule called the ribosome to produced the appropriate protein. The translation from mRNA to protein is 

aided by adaptor molecules called the transfer RNA or tRNA molecules. In some sense the tRNA molecules 

^The existence of introns came to the attention of the scientific community only in 1977 [2]. 



store the genetic code as we shall see in Sec. 4. Ribosomes are often referred to as the protein factories of 

the cell. There are many ribosomes in a cell working in parallel like molecular machines. 

Many details are omitted in Fig. 6 for brevity. For example the mRNA is in reality the complement of 

the gene, that is, Cs are replaced with Gs, and As with Ts (rather Us). Thus, if the gene is ATTAGC then 

the mRNA is UAAUCG. There is a second level of complementing which cancels this when the mRNA 

attaches to tRNA molecules at the so-called anticodon sites. 

The observation that each gene is responsible for the creation of a protein (through mRNA) is often 

expressed as 

gene in DNA -^ RNA —>■ protein 

and is referred to as the central dogma of molecular biology. We will see in Sec. 8 that the dogma has been 

challenged in recent years. 
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Figure 6. When a gene is ready to be expressed, it is duplicated in the form of a single-strand molecule called the 
mRNA (messenger RNA) which then leaves the nucleus. The introns are spliced out and a shorter mRNA molecule 
is produced. Thus, unlike the parent gene, the mRNA is a concatenation of the exons only. It is used by ribosomes 
outside the nucleus of the cell to manufacture the appropriate protein coded by the original gene. Thus protein 
production involves the transcription of genes into mRNA and the subsequent translation of the 4-letter language to 
a 20-letter language. 

4. THE GENETIC CODE 

How does the cell know what protein to make from a particular gene? This information is contained in a 

code which is common to all hfe. Recall that the gene gets duplicated into the mRNA molecule which is then 

spliced so that it contains only the exons of the gene. Imagine that this spliced mRNA is divided into groups 



of three cidjacent bases. Each triplet is called a codon. Evidently there are 64 possible codons. Thus the 

mRNA is nothing but a sequence of codons. Each codon instructs the cell machinery to synthesize an amino 

acid. The codon sequence therefore uniquely identifies an amino acid sequence which defines a protein. This 

mapping is called the genetic code and is shown^ in Fig. 7. Since there are 64 possible codons but only 20 

amino acids, the mapping from codons to amino acids is many-to-one (Fig. 8). The story of how the genetic 

code was cracked is summarized in Box B2. 

AAA: K (Lys) GAA : E (Glu) TAA: Stop CAA : Q (Ghi) 
AAG: K (Lys) GAG: E (Glu) TAG : Stop CAG: Q (Gin) 
AAT: N (Asn) GAT: D (Asp) TAT: Y (Tyr) CAT: H (His) 
AAC: N (Asn) GAG : D (Asp) TAG : Y (Tyr) CAC: H (His) 

AGA: R (Arg) GGA : G (Gly) TGA: Stop GGA : R (Arg) 
AGG: R (Arg) GGG : G (Gly) TGG: W (Trp) GGG : R (Arg) 
AGT: S (Ser) GGT : G (Gly) TGT: C (Cys) GGT: R (Arg) 
AGC: S (Ser) GGG : G (Gly) TGC: C (Cys) CGC: R (Arg) 

ATA: I (He) GTA : V (Val) TTA: L (Leu) GTA: L (Leu) 
ATG: M (Met) GTG : V (Val) TTG : L (Leu) CTG: L (Leu) 
ATG = Start 
ATT: I (He) GTT : V (Val) TTT: F (Phe) GTT: L (Leu) 
ATC: I (He) GTG : V (Val) TTC : F (Phe) GTG : L (Leu) 

AC A: T (Thr) GGA: A (Ala) TCA: S (Ser) CCA : P (Pro) 
ACG: T (Thr) GGG: A (Ala) TCG: S (Ser) CCG : P (Pro) 
ACT: T (Thr) GGT : A (Ala) TGT: S (Ser) CCT: P (Pro) 
ACC: T (Thr) GCC : A (Ala) TGC : S (Ser) GCC : P (Pro) 

Figure 7. The genetic code. Triples of bases such as AAA denote codons. The single letters such as K denote amino 
acids. Their three letter names (e.g., Lys) are also shown. Full names of amino acids can be found in Fig. 8. 

When a gene is expressed, each codon in the mRNA produces an amino acid according to the genetic code, 

and the amino acids are bonded together into a chain. Figure 9 shows an example of how mRNA is coverted 

to protein using the genetic code. When all the codons in the mRNA are exhausted we get a long chain of 

amino acids (typically a few hundred long). This is the protein corresponding to the original gene. Notice 

that there is a start codon ATG which signifies the beginning of the protein-coding part of the gene. If 

a start codon occurs inside a gene again, it produces the amino acid methionine. A stop codon signifies 

that the protein coding part of the gene has come to an end. There are three stop codons. The chemical 

bond between amino acids is a covalent peptide bond. Figure 10 shows examples of two amino acids and the 

resulting bond. 

*We have used T instead of U because the original gene has T. In fact We will use U and T rather interchangably; the 
context will make the distinction clear. 



The translation of the codons into amino acids is made physically possible by adaptor molecules called 

transfer RNA or tRNA molecules. There are more than 20 kinds of tRNA molecules in the cell (at least one 

for each amino acid). One end of the molecule matches a specific codon and the other end attaches to the 

corresponding amino acid. See Fig. 11. The molecule ribosome (Sec. 3) works in conjunction with tRNA 

molecules and mRNA to produce the protein. So it is clear that the genetic code is essentially stored in the 

tRNA molecules. 

1 A Ala Alanine GCA,GCC,GCG,GCT 
2 C Cys Cysteine (has S) TGC, TGT 
3 D Asp Aspartic acid GAC.GAT 
4 E Glu Glutamic acid GAA,GAG 
5 F Phe Phenylalanine^ 'i"i'C,TTT 
6 G Gly Glycine GGA,GGC,GGG,GGT 
7 H His Histidine^ CAC,CAT 
8 I Re Isoleucine^ ATA,ATC,ATT 
9 K Lys Lysine^ AAA,AAG 
10 L Leu Leucine^ TTA,TTG,CTA,CTC,CTG,CTT 
11 M Met Methionine® (has S) ATG 
12 N Asn Asparagine AAC,AAT 
13 P Pro ProUne CCA, CCC, CCG,CCT 
14 Q Gin Glutamine CAA,CAG 
15 R Arg Arginine''^ AGA,AGG,CGA,CGC,CGG,CGT 
16 S Ser Serine AGC,AGT,TCA,TCC,TCG,TCT 
17 T Thr Threonine® ACA,ACC,ACG,ACT 
18 V Val Valine® GTA,GTC,GTG,GTT 
19 w IVp Tryptophan^° TGG 
20 Y Tyr Tyrosine^^ TAC,TAT 

Figure 8. A list of the twenty amino acids, and codons which generate them (from Fig. 7). For example the amino 
£icid alanine {A) can be generated by any one of four possible codons GCA, GCC, GCG, or GCT. The superscipts 1 
to 11 indicate the eleven essential amino acids (some references say there are fewer than eleven). These by definition 
axe the amino acids animals cannot manufacture — they need to eat them. Milk provides all essential amino acids, 
and so does a combination of grains and beans. 

It is a wonder of Nature that all life forms (from bacteria to mammals) use the same genetic code. This is 

no doubt due to the common origin of all hfe. Can one change Nature's genetic code? Apparently this is 

not impossible. Recall from Fig. 7 that the stop codon TAG produces no amino acid. In 2001 Wang and 

Schultz added enough biological machinery in E. coh bacteria to enable it to S3Tithesize a new amino acid 

from TAG. In 2003 they showed how this amino acid can be inserted in a E. coli protein made with natinral 

amino acids. The same idea was successful in yeast. It has been suggested by some authors that such new 

proteins could be the key to destroying cancerous cells quickly. A Scientific American article which appeared 

in May 2004 describes some of these areas of research [44]. 
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Figure 9. A toy example showing how a sequence of codons gets translated to a protein, ten amino-acids long. In 
most cases genes are much longer (thousands of bases); proteins have several hundred amino acids. Notice that if a 
base is deleted by accident somewhere in the middle, then all the codons following that point are changed, possibly 
changing all the amino acids following. If an entire codon is deleted, it is like deleting an amino acid; nothing else 
changes. 
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Figure 10. (a) Examples of two amino acids, and (b) bonding of these two amino acids, with consequent release 
of a water molecule. Like bases, amino acids are also made from carbon, hydrogen, oxygen, and nitrogen. Some of 
them also have sulfur (as indicated in Fig. 8). 
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Figure 11. Example of a transfer RNA molecule in yeast. The bases are numbered from 1 to 76. Only a particular 
codon can match perfectly with the anticodon, and can therefore be associated with the specific amino acid that is 
able to attach to the tRNA at the top end. In this manner, the tRNA molecules store the genetic code in the cell. 



5. PROTEINS 

Because of the innumerable combinations from the alphabet of 20 amino acids, the number of different 

proteins in living organisms is enormous. Proteins drive most of the biological processes in living organisms. 

Enzymes, for example, are proteins with a special role, namely the speeding up of biochemical reactions 

in living organisms. Fibers in tendons and hgaments, components of hemoglobin (oxygen carrier in red 

blood cells), myosin in muscle cells (motor protein), ferritin in the liver, rhodopsin in retina (light detector) 

and harmones such as insulin, gastrin, and glucagon, are all proteins. When a protein is left in a watery 

medium it automatically folds into a specific three dimensional structure, which depends almost entirely on 

the amino acid sequence defining the protein (the pH or acidity of the watery medium is also important). 

The 3D shape of a protein allows it to interact only with very specific molecules in the cell, and this is 

important for the proper functioning of proteins.* In fact protein folding is a major area of research by itself. 

For example, given the amino acid sequence alone, can we predict the 3D folded shape using physics and 

mathematics alone? Figure 12 shows a computer drawing of the protein hemoglobin which is made of four 

smaller proteins [2]. Like DNA, proteins are macro molecules. The average protein is about 40,000 times 

heavier than a hydrogen atom. We will say more about the signal processing aspects in Sec. 6.3. 

The discovery of the double helix also solved another mystery of molecular biology: it suggested how 

the huge DNA is replicated accurately in cell devision. Namely, the double strand separates or unzips into 

two single strands each of which serves as a mold to form a new complementary strand. (The unzipping 

process is also present locally when a gene is copied into an mRNA (Fig. 13)). Each single strand quickly 

manufactures the complementary strand from bases floating around in the cell. This was later verified 

by Matt Meselson and Frank Stahl, sometime after 1954, in an experiment considered to be one of the 

most beautiful experiments in biology. The accuracy of duplication is phenomenal because of the self error 

correcting mechanism (called mismatch-pair system) imphcit in the cell [2]. The probability of error is about 

10~^. Compare this to a average typist (1 error per typped page) or the postal system (10 late deliveries 

out of every ...). Such acciuracy is necessary in gene reproduction because even small changes in the DNA 

(mutations, insertions, deletions) can change the proteins made by the genes dramatically. For example, 

sickle cell anemia is created because of a single error in a gene (see Fig. 14). On the other hand there are 

examples where even multiple errors do not change the protein (because the codon to amino acid mapping 

has redundancy. Fig. 8. So the cell has built-in tolerance for errors; the example of sickle cell anemia is 

rather unusual. 

^For example the enzyme thrombin reacts only with the protein fibrinogen (which is part of the blood clotting process). 
There axe exceptions too: the digestive enzymes pepsin and chymotrypsin act on almost any protein they encounter. The 
Encyclopedia Britannica contains a wealth of information on this topic. 

10 



Figure 12. Pasta dish? No, it is an example of a protein (Hemoglobin, human). Figure taken from the website 
www.biochem.szote.u-szeged.hu/astrojan/protein2.htm, generated by the program MOLMOL (Koradi et al., 1996). 
See reference [15]. 
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Figure 13. Unzipping of a DNA sequence to produce an mRNA copy of a selected region. This occurs during gene 
expression. Note that the mRNA strand is complementary to the DNA, that is A is replaced with a T (rather U 
which is similar) and vice versa; similarly C is replaced with G and vice versa. A similar unzipping separates the two 
DNA strands completely during cell division. 
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Figure 14. Cause of sickle-cell anemia. A gene called HBB in human chromosome 11 creates the protein beta globin 
in the hemoglobin of red blood cells. This gene is 1600 bases long. A single mutation (or base-change) in this gene 
gives rise to sickle-cell anemia. The figure shows portions of the normal gene and mutated gene. The codon GAG 
is changed to GTG, which means that the amino acid changes from glutamic acid to valine. This single change 
in the amino acid chain makes a crucial corner of the 3D protein molecule hydrophobic (water hating), and causes 
hemoglobin molecules to stick together and create rigid fibres. 

6. FILTERING AND TRANSFORM-DOMAIN METHODS IN GENOMICS AND PROTEOMICS 

The application of Fourier transform techniques has been found to be very useful both for DNAs and 

protein sequences. First it is convenient to introduce indicator sequences for bases in DNA. For example the 

11 



indicator for base A is a binary sequence of the form a;^(n) = 000110111000101010..., where 1 indicates 

the presence of an A and 0 indicates its absence. The indicator sequences for the other bases are defined 

similarly. Denote the discrete Fourier transform [64] or DFT of a length-iV block of a;^(n) as Xx[fc], that is, 

XAIH = J2^~o a;A(n)e-^'2'^*'"/-^, 0 < fc < iV - 1. The DFTs XT[k],Xc[k], and Xaik] are defined similarly. 

6.1. Identifying Protein Coding Genes 

It has been noticed that protein-coding regions (exons) in genes have a period-3 component because of coding 

biases in the translation of codons into amino acids. This observation can be traced back to the 1980 work 

of Trifonov and Sussman [35]. The period-3 property is not present outside exons, and can be exploited to 

locate exons. [3, 26]. Thus if we take AT to be a multiple of 3 and plot 

^[A;] ^ \XA[k]\^ + \XT[kf + \Xc[k]\^ + \XG[k]\' (1) 

then we should see a peak at the sample value k = N/3 (corresponding to 27r/3). Given a long sequence of 

bases we can calculate S[N/Z] for short windows of the data, and then shde the window. Thus, we get a 

pictiure of how S[N/3] evolves along the length of the DNA sequence. It is necessary that the window length 

N be sufficiently large (typical window sizes are a few hundreds, eg., 351, to a few thousands) so that the 

periodicity effect dominates the background 1// spectrum (Sec. 6.2). However a long window implies longer 

computation time, and also compromises the base-domain resolution in predicting the exon location. 

The sliding window method can be regarded as digital filtering followed by downsamphng (at a rate 

depending on the separation between adjacent positions of the window [67]). The filter has a simple impulse 

response 

■w{n) = giwon    0 < n < iV - 1 
0 otherwise. 

Figure 15.  Computation of DFT with a sliding window is equivalent to lowpass digital filtering.  The frequency 
response magnitude is as shown, and offers about 13 dB stopband attenuation. 

This is a bandpass filter with passband centered at UQ = 27r/3 and minimum stopband attenuation of about 

13 dB (Fig.  15). If we pay careful attention to the design of the digital filter, we can isolate the period-3 

12 



behavior from background information such as 1// noise more effectively. We can also use efficient methods 

to design and implement the filter, thereby reducing computational complexity. 

Based on these observations, a number of methods have been proposed for designing digital filters suited 

to gene prediction application [27], [28]. We show in Fig. 16 the exon prediction results for gene F56F11.4 

in the C. elegans chromosome III. This gene has five exons. The first plot uses the DFT based spectrum 

using a sliding window. The five peaks corresponding to the exons can be seen clearly. The second plot uses 

a multistage filter H{z) similar to the IFIR filter advanced by Neuvo et al. [63]. Notice that the background 

noise (due to 1// behavior. Sec. 6.2) has been removed almost completely and the five exons can be seen 

clearly. Further design details of this can be found [28] and in a recent tutorial article [8]. 
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Figure 16. Left plot: the DFT based spectrum S[N/S\ for gene F56F11.4 in the C. elegans chromosome III. Right 
plot: the multistage narrowband bandpass filter output [28] for the same gene. The mulitstage filter does a very good 
job of eliminating the 1// component in the DNA spectrum, and the exon regions are revealed more clearly. 

Some authors have claimed that the period-3 property is due to nonimiform codon usage, also known as 

codon bias: even though there are several codons which code a given amino acid (Fig. 8), they are not 

used with uniform probability in organisms. For example base G dominates at certain codon positions in 

the coding regions [31]. We have, in fact, observed experimentally that the use of the plot |X(3(A;)p, which 

depends on base G alone, is often quite sufficient for revealing the period-3 property, and therefore for the 

prediction of protein coding regions. 

Does the method always work? Tiwari, et al. [26] have observed that some genes do not exhibit period-3 

behavior at all in S. cerevisiae. Furthermore for procaryotes (cells without a nucleus), and some viral and 

mitochondria! base sequences, such periodicity has even been observed in noncoding regions [33]. For this 

and many other reasons [23], gene identification is a very complex problem, and the identification of period-3 

regions is only a step towards gene and exon identification. Hidden Markov models (Sec. 7) have been used 
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qiiite successfully for this application [24]. 

6.2. Long range correlations or 1/f behavior 

The period-3 behavior described above indicates strong short-term correlation in the coding regions. But 

there is also long-range correlation exhibited by DNA sequences both in the gene regions and intergenetic 

regions. One of the earhest papers to point this out appeared in Nature in 1992 [34]. The study was 

made based on a concept called the DNA walk. Latter studies by other authors examined correlations over 

much longer regions which contained many genes. Long range correlations have been found both in coding 

and noncoding regions [39]. According to Fourier transform theory, long range correlation imphes that the 

Fourier transform has 1//-behavior in low frequency regions [65]. 

Another early work on the topic was the 1992 paper by Richard Voss [37] who was perhaps also the first 

person to define indicator sequences for bases, and calculate the deterministic autocorrelation. For example, 

letting XAin) be the indicator for base A, the autocorrelation is rA^k) = ^^ XA{'n)xA{n — k), and the Fourier 

transform 5^(e^") of this is the power-spectrum for base A. Notice that 5^(e-''^) = |X^(e^'^)|^. Voss analyzed 

the human Cytomegalovirus strain AD169. The genome length was N = 229,354. The lowest meaningful 

frequency^ can be regarded as 1/N which is sHghtly smaller than 0.5 * 10~^. Voss demonstrated that the 

power spectrum has power-law or 1/f^ behavior for each of the four indicator sequences (for appropriate /3 

close to unity). Later studies have indicated that such long range correlation is valid even further, extending 

to several millions of bases [36] (i.e., the 1/f behavior extends to even smaller frequencies). Figure 17 shows 

the power spectrum 5^(6^'^) for base A for the first one-million bases of an entire bacterial genome of length 

about 1.55 million. The organism is called Aquifex aeolicus, and its genome can be found in public websites 

such as the gene bank [29]. There were 0.5 million samples of S'^(e^") in 0 < w < TT. The plot shows 

a slightly smoothed version with a sliding rectangular window of length 33. Notice that this is a log-log 

plot and the variations near zero-frequency can be seen clearly. The 1/f behavior continues till very low 

frequencies, flattening out only as we get really close to zero frequency. Notice also the thin line representing 

a sharp peak near the right edge of the plot. This corresponds to the peak at 27r/3 due to period-3 property 

in the coding regions. More examples can be found in [36]. Li has written a comprehensive review paper on 

this topic [33], and has also observed [32] that the 1/f behavior in natural phenomena can be traced to the 

so-called duplication-mutation model (see Fig. 18). 

^Recall that the sample spacing for indicator sequences is normalized to be unity, so the highest frequency TT corresponds to 
0.5. 
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Figure 17. Demonstration of 1// spectrum. The 1// behavior extends to very small frequencies indicating very- 
long range correlation. 

In addition to the overall 1// behavior of DNA sequences, and the period-3 property in protein coding 

regions, it has been observed by many authors that DNA molecules also have components of period 10 to 11 

(see [31] and references therein). In [31] it is argued that this periodicity can be attributed to an alternation 

property in protein molecules. This arises from the fact that the hydrophiHc and hydophobic regions (water 

loving and water hating regions) alternate at a certain rate in the three-dimensional folded form. 

A 
• Start from a short binary seed s(n). ■■ 

• Duplicate and mutate randomly with ^gm 
small error probability p 

• Concatenate the result to s(n). mam 

Keep repeating this to get the long 
sequence x(n). This has the 1/f property! 

Figure 18. When life started on earth the DNA molecules were short (few thousand bases). As evolution progressed, 
the molecules went through a lengthening processes which involved duplication and mutation. Imagine we have a 
character string s{n) of length L. Suppose we duplicate it and then make some random changes of certain characters 
(from the same alphabet), and concatenate the result to the original s{n) to form a sequence that is twice as long. 
Further repetition of duplication and mutation quickly results in a very long sequence comparable to today's DNA 
molecules. It can be shown that repeated application of the duplication-mutation process results in 1// behavior in 
the spectrum [32]. 

6.3. Fourier Transforms of Protein Sequences 

Of fundamental importance to protein functioning is the ability of a protein to interact selectively with other 

molecules. This ability comes from the very sophisticated 3D shape assumed by a protein depending on its 
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amino acid sequence (e.g., Fig. 12, Sec. 5). There are specific sites in the 3D structure called hot spots where 

certain other molecules can conveniently bind to the protein (see the cartoon demonstration in Fig. 19). 

\ -lOinc othtr      Y^ 

Figure 19. Toy cartoon, showing how the surfaces of certain protein molecules fit like puzzle pieces when they 
interact. 

A protein molecule typically has many functions (many hot spots). Given a collection of proteins, suppose 

they all have one function in common. Is there a mathematical way to identify this commonality simply by 

analyzing the amino acid sequence? Yes indeed, based on Fourier techniques [12]. 

With each one of the twenty amino acids it is possible to associate a unique nonnegative number called 

the average electron-ion interaction potential (EIIP). The physical basis for this is explained in [12] and 

references therein. The EIIP values are shown in Fig. 20 and plotted in increasing order in Fig. 21. Given a 

protein, we can associate a numerical sequence x{n) with it such that x{n) is equal to the EIIP value of the 

nth amino acid. The argument n can be regarded as equispaced distance (f« 3.8 A or 0.38 nm, the spacing 

between amino acids). 

Let X{e^^) = ^n=o 3;(n)e~^"" be the Fourier transform of x{n), where N is the number of the amino 

acids in the protein. Usually a plot of |X(e-''^)| does not reveal much (e.g., see top plots in Fig. 22), Now 

assume that we have a group of proteins. Each protein may have several biological functions but assume 

that there are some functions that are common to all these proteins. Define the magnitude of the product of 

the Fourier transforms associated with these proteins as follows: P(e^") = |Xi(e^")X2(e^'^).. .XM(e^")|- It 

has been observed through extensive experiments that if a group of proteins has only one common function 

then the product spectrum P(e^'^) has one significant peak (bottom plot. Fig. 22). This corresponds to the 

statement that there are common periodic components in the EIIP sequence in the amino acid domain. The 

physical basis for this arises from the so-called resonant recognition between proteins and their targets [12]. 

The product P(e^") has been referred to as the consensus spectrum among the group of proteins used in 

its definition. The frequency where the peak occurs is called the characteristic frequency for the particular 

protein group. For example the charactereristic frequency is 0.0234 for hemoglobins and 0.3203 for glucagons 
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(frequencies are normalized to be in the range [0,0.5] as in standard DSP practice).^ 

Assume we have identified that a certain function of a protein is associated with the characteristic 

frequency /i. Is it possible to identify the amino acids that are primarily responsible for that function (i.e., 

identify the hot spots in the 3D protein structure which are responsible for one particular function)? This 

is tricky because the value of a Fourier transform at a given frequency depends on all the time-domain 

samples. Transforms which offer a local basis such as the wavelet transformation and short time Fourier 

transformation are more convenient and have been successfully used for this [17], [18]. A detailed study 

of the use of wavelet transforms in protein structures can be found in the recent paper by Murray, et al. 

[16]. The impact of the use of signal processing tools here could be significant. One advantage of being able 

to identify a characteristic frequency with a particular funtionality is that it is then possible to synthesize 

artificial amino acid sequences or pep tides (short amino acid sequences). These could be potentially useful 

in medicine [17]. 

1 A Ala Alanine 0.0373 11 M Met Methionine 0.0823 
2 C Cys Cysteine 0.0829 12 N Asn Asparagine 0.0036 
3 D Asp Aspartic acid 0.1263 13 P Pro ProHne 0.0198 
4 E Glu Glutamic acid 0.0058 14 Q Gin Glutamine 0.0761 
5 F Phe Phenylalanine 0.0946 15 R Arg Arginine 0.0959 
6 G Gly Glycine 0.0050 16 S Ser Serine 0.0829 
7 H His Histidine 0.0242 17 T Thr Threonine 0.0941 
8 I lie Isoleucine 0.0000 18 V Val Vahne 0.0057 
9 K Lys Lysine 0.0371 19 W IVp Tryptophan 0.0548 
10 L Leu Leucine 0.0000 20 Y Tyr Tyrosine 0.0516 

Figure 20. Electron-ion interaction potentials (EIIP) value for the twenty amino acids [12]. 

^Hemoglobins aie oxygen carriers in the red blood cells.  Glucagons are protein hormones generated in the pancreas, and 
affect glucose level in blood. 
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Figure 21. Plot of the electron-ion interaction potential (EIIP) for the twenty amino acids. 
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Figure 22. Magnitude squares of the Fourier transforms of the EIIP sequences for the proteins PGF basic bovine 
(top left) and FGF acidic bovine (top right). The product, which represents the square of the consensus spectrum, 
is plotted in the bottom [12]. 
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7. ROLE OF HIDDEN MARKOV MODELS 

Markov models are very useful to represent families of sequences with certain specific properties. To explain 

the idea consider Fig. 23(a) which shows part of a DNA sequence. The base A appears a few times, and it 

can be followed by an A, C, T, or a G. Given a long DNA sequence we can count the number of times the 

base A is followed by, say, a G. From this we can estimate the probability that an A is followed by a G. If 

this probability is 0.3 for example, we indicate it as shown in Fig. 23(b). The figure also shows examples 

of probabilities for A to transition to other bases, including itself. The first row of the matrix in Fig. 23(c) 

shows the four probabilities more compactly (notice that their sum is unity). Similarly the probabilities 

that the base C would transition into the four bases can be estimated, and is shown in the second row of 

the matrix. This 4x4 matrix is called a state transition matrix, and is denoted as S. Fig. 23(b) is called 

a Markov model. The four states in this model are A, C, T, and G. Given a sequence or a set of sequences 

of "similar kind" (e.g., a long list of exons from several genes) the parameters of the model (the transition 

probabilities) can readily be estimated. The process of identifying the model parametes is called training 

the model. In all discussions it is implicitly assumed that the probabilities of transitions are fixed and do 

not depend on past transitions. 

(a)      AACTGAGGTACAATTCGATCTC 

A      C      T      G 
A     fci      0.2      0.4     0.3 

C       0.2      0.5      0.1      0.2 

T       0.5      0.2      0.1      0.2 

(c)      G    [o3      0.1      0.4      0.2 j 

State transition matrix £ 

(b) 

Figure 23.  Explaining the basic principle of the Markov model,   (a) A sequence of bases, (b) the state diagram 
showing the transitions from A, and (c) an example of the state transition matrix. 

Suppose we are given a Markov model (i.e., S given). Given an arbitrary state sequence x = [a;(l), a:(2),..., x{L)] 

we can calculate the probabihty that x has been generated by our model. This is given by the product 

P(x) = P{x{l)) X P{x{l) -^ x{2)) X P{x{2) -^ x{3)) x ... x P{x{L - 1) ^ x{L)) 

where P{x{k) —> x{m)) is the transition probability for going from x(k) to x{'m), and can be found from 
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the matrix S. The usefulness of such computation is as follows: given a number of Markov models (Si for 

introns, S2 for exons, and so forth) and given a sequence x, we can calculate the probabilities that this 

sequence is generated by any of these models. The model which gives the highest probabiUty is most likely 

the model which generated the sequence. 

r          ■■ ^                     > 
A: 0.3 A: 0.5 A: 0.1 
C:0.1 C:0.3 C:0.3 
T:0.4 T:0.1 T:0.4 
G:0.2 G:0.1 G:0.2 

(c)    state 1 State 2 State 3 

(b) 

1 
1 

ro.3 
2 
0.7 

3 
0.0 

2 0.0 0.4 0.6 
3 0.9 0.0 0.1 

State transition matrix £ 
(d) 

1 
2 
3 

A     C    T      G 
^0.3   0.1   0.4   0.2 

0.5   0.3  0.1    0.1 
0.1    0.3   0.4   0.2 

Output matrix ll 

Figure 24. Basic principle of the hidden Markov model (HMM). (a) State diagram, (b) state transition matrix, (c) 
state to output probabilities, and (d) output matrix. 

A hidden Markov model (HMM) is obtained by a slight modification of the Markov model. Thus consider 

the state diagram shown in Fig. 24(a) which shows three states numbered 1, 2, and 3. The probabilities 

of transitions from the states are also indicated, resulting in the state transition matrix S shown in Fig. 

24(b). When the system is in a particular state, it can output one of four possible symbols, namely A, T, C, 

or G, and there is a probabihty associated with each of these. This is demonstrated in Fig. 24(c), and 

summarized more compactly in the so-called output matrix 11 shown in Fig. 24(d). To give an example of 

how HMMs might be useful, we can imagine that state 1 corresponds to exons, state 2 to introns, and state 3 

to intergenic spaces. In each of these states, the probabilities of transitions between bases could be different. 

In order to apply the hidden Markov model theory successfully there are three problems that need to 

be solved in practice [6]. These are listed below along with names of standard algorithms which have been 

developed for these. 

1. Given an HMM (i.e., given the matrices S and 11) and an output sequence 2/(1), y(2),..., compute the 

state sequence a;(fc) which most likely generated it. This is solved by the famous Viterbi's algorithm. 
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2. Given the HMM and an output sequence y(l), y(2),..., compute the probability that the HMM gen- 

erates this. The forward-backward algorithm solves this. 

3. The third problem is training: how should one design the model parameters S and 11 such that 

they are optimal for an application, e.g., to represent exons? The most popular algorithm for this is 

the expectation maximization algorithm commonly known as the EM algorithm or the Baum-Welch 

algorithm. 

Further details on these algorithm can be found in [6]. The theory of HMMs has been applied successfully for 

gene identification, for identification of special regions of DNA such as CpG islands, and for DNA sequence 

alignment. There are many good references which explain the use of HMMs in molecular biology. A good 

start would be to look at [24], [25], [7], and [4], and then proceed to references therein. As for basics, there 

are excellent tutorials and books which explain the theory of Hidden Markov models. The paper by Rabiner 

in the Proceedings of the IEEE [6] has been widely cited in the molecular biology literature. The books by 

Rabiner and Juang [66] and by Jelinek [61] give wonderful exposure to the theory and its applications in 

speech recognition. 

8. NON CODING GENES AND ncRNA 

The most common meaning associated with genes during the four decades following the discovery of the 

double helix was that genes are those parts of the DNA sequence that code for proteins (Sec. 3). But it 

has become increasingly clear in the last ten years that there are portions of DNA which are transcripted 

to RNA sequences that do not get translated to proteins. These are called noncoding RNA or ncRNA, and 

the portions of DNA which generate them are called noncoding genes. Many of these are located in the 

intergenic space (space between protein coding genes). Indeed ncRNAs have been known for many years, 

the transfer RNA (tRNA) and ribosomal RNA (rRNA) being classic text-book examples [2]. However, the 

recognition that there are many different ncRNAs and that noncoding genes play a heriditary role is more 

recent. The fact that noncoding genes have such tremendous importance has been regarded as a challenge 

to the central dogma of molecular biology which suggests that genes by definition code for proteins (Sec. 

3). So the intergenic space cannot by any means be regarded as "junk DNA" as it used be to at one time. 

An excellent place to start reading about noncoding genes is the Scientific American article by Gibbs [42]. 

Papers by Eddy such as the Nature genetics review article [40] are informative as well as insightful. 
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Figure 25. Left: the C. elegans worm, mangified many times. Right: if a human baby grew in size but not in 
features, that would be analogous to the C. elegans story which lead to the discovery of the importance of ncRNA 
genes. See text. 

Perhaps the discovery of the importance of noncoding genes can be traced back to the case of a C. elegans 

baby that wouldn't grow up.'^ In an observation made by Ambrose et al. (Dartmouth medical school, 

Hanover, N. H) there was a C. elegans baby in the laboratory which grew in size but never came out of the 

first larva stage (see analogy of human baby, Fig. 25). The scientists were able to trace this to a defective 

gene. In the healthy worm the function of this gene was to produce a tiny RNA molecule, only 22 bases 

long. The role of this RNA molecule was to regulate other protein coding genes responsible for normal 

growth into adult. So this RNA did not get translated into a protein; it was an ncRNA, and functioned 

all by itself. In the defective C. elegans baby, this particular ncRNA gene in the DNA was mutated, and 

the ncRNA was not functioning properly, thereby affecting growth functions. This was the first ncRNA 

recognized (besides tRNA and so forth), and ncRNAs were taken seriously only after this observation. See 

the short but fascinating account given by John Travis in [49]. 

Many more ncRNAs have been found in several organisms in the last ten years and their functions 

identified [40], [48]. It has been conjectured [42] that about fifty percent of the genes in mice generate 

ncRNAs rather than proteins! C. elegans has more than 200 genes generating micro ncRNAs (tiny ncRNAs 

about 22 bases long). And the E. coh bacterium has several hundred noncoding genes and about 4200 

protein coding genes [40]. Today it is recognized that heriditary information is carried by protein coding 

genes, noncoding genes and a third layer of information storage called the epigenetic layer [43]. 

Noncoding genes have created a great deal of excitement in medicine. Other related research not discussed 

here include the role of double strand RNAs and antisense RNAs in gene silencing. These are called siRNAs 

(small interfering RNAs) and can be inserted into cells to prevent the expression of hazardous genes. A good 

starting point for the interested reader is the series of Scientific American articles [43]-[45]. The discovery 

of noncoding genes apparently solves a long-held puzzle in biology. It has been known that the number of 

protein coding genes never scales in proportion to the size of the organism [42]. For example worms have 

'^0. Elegans Is a worm or nematode used extensively in biological studies. It grows into an adult with exactly 959 cells. 
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only twice as many protein-coding genes as bacteria. Humans have only thrice as much (about 35,000). And 

the rice plant has more genes than humans! But if the number of noncoding genes are counted, it seems 

that the total number of genes does scale well with complexity of organisms [42]. 

8.1. identifying noncoding genes 

In Sec. 6.1 we explained that there are many ways to identify protein coding genes in DNA sequences. 

These genes have a period-3 component due to codon bias which is usually quite strong. For more precise 

identification one can use hidden Markov models as explained in [24]. Computational identification of 

noncoding genes is much more difl&cult. These genes could be very small (sometimes no longer than 22 

bases), do not exhibit the period-3 property, and do not have start and stop codons. Conclusions could often 

be wrong; there are case histories where certain genes, originally thought to be ncRNA genes, were later 

found to encode tiny proteins [40]. 
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Figure 26. The picture shows a dsrA RNA in E. coll. Notice the secondary structure created by base pairing in 
blue shaded areas. Functionality of ncRNAs depends mostly on their secondary structure. 

It has been noticed that noncoding genes and ncRNAs function by virtue of their secondary structure which 

we explain next. Consider Fig. 26 which shows an ncRNA in E. coli bacteria. Notice that even though 

it is a single stranded molecule (hke most RNAs are), there are long stretches of bases in one part which 

are complementary to stretches in other parts (recall here that A pairs up with U and C with G). This 

complementarity forces the RNA to fold into shapes which are not only beautiful, but in fact are crucial to 
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their biological functioning. Many of the RNAs can act as enzymes primarily by virtue of this folded shape. 

RNA enzymes are called ribozymes, so they are not confused with normal enzymes which are proteins. Some 

computational biologists have suggested that noncoding genes in the DNA sequences can be identified simply 

by looking for subsequences which have secondary structure [47]. 

We will return to this later but briefly mention another approach called comparative genomics which 

has been reasonably successful. The idea behind comparative genomics is that if two or more species have 

a common stretch of DNA, then it is probably doing something important. Otherwise nature would not 

have conserved it for millions of years. So these stretches would have to be either protein coding genes or 

noncoding genes. If they do not pass standard tests for protein coding genes they are hkely to be noncoding 

genes. In this way it is possible to accumulate a list of potential noncoding genes in a given species and then 

check them by other biological means. Comparative study of DNA sequences is not as simple as it appears 

to be on first sight because the sequences being compared come from various species, and "identical regions" 

can still differ due to mutations, insertions, and deletions of bases through millions of years of evolution. For 

example consider the following four sequences: 

X X xAATAGCGA xxxxxxxxxxx AATAC x x x AAATACCG 

X X X X X X xAATAGCGA x x x x x AATAC x x x x x AAATACCG 

X XXX XX xAAGAGCGA xxxxx AATAC xxxxx AAAGTCCG 

X X X X x X xAAAGCGA xxxxx AATAC xxxxx AAATAAACCG 

where x denotes that the base could be any one of the four. Inspection reveals that there are many coramon 

patterns here. However a direct comparison base by base would lead a computer to conclude that these are 

not identical sequences at all. There are patterns which are common but with slight mutations; there are 

unequal gaps between similar patterns; and the "identical parts" often do not even have identical lengths! 

The task of comparing such sequences is nontrivial science. It comes under the topic of sequence align- 

ment. Computational biologists have developed many methods for this and in fact assign scores to degree of 

similarity between sequences. Markov models have been used for this application. Many wonderful details 

can be found in the book by Durbin et al. [4]. In a study by the National Human Genome Research Institute 

(NHGRI) the human genome has been compared with many others such as cows, dogs, pigs, and rats. It 

has been found that there were over 150 common regions in the intergenic space! Many potential ncRNA 

sequences have been listed in this way and later confirmed by other means. The method of comparative 

genomics to identify ncRNAs does not work perfectly yet, but has been quite useful. 
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8.2. Identifying Secondary Structure 

A few words on identification of secondary structures directly without comparative genomics. Consider Fig. 

27(a) which shows a DNA sequence with two short subsequences AATC and GATT buried in it. These 

subsequences are separated by many bases. If we reverse the first subsequence we get CTAA which is 

complementary to the second sequence. So the subsequences can be regarded as two halves of a palindrome 

(i.e., a symmetric sequence Hke xyzpqpzyx).^ The sequence can therefore fold as shown in Fig. 27(b) and 

remain stable in that configuration because of the A—T and C—G bondings. If an ncRNA is generated 

from such a DNA segment it would therefore fold as shown. In practice the matching subsequences many 

not match exactly, they may be separated by arbitrary number of bases, and furthermore there may be more 

than one matching pair. The secondary structure can therefore be quite complicated. All of these features 

can be clearly seen in the example of ncRNA shown in Fig. 26. 

Sequence with a palindrome buried in it 

xxxAATCxxxxxxxxxxxxxxxxxxxxxxxGATTxxxxxxxxxxx 
(a) 

Folded xxxAATCxxxxxxxxxxxxxxsXx 
sequence MM ^ 

^°^ xxxxxxxxxxxTTAGxxxxxxxxxxxxxxxx 

Figure 27. (a) Example of a palindrome-like pattern buried in DNA, and (b) the natural way for this sequence to 
fold. 

The biological functioning of the ncRNA depends primarily on the way it folds, that is, on the secondary 

structure rather than the exact sequence of base pairs. For example the two sequences shown below would 

fold the same way. 

X X xAATC xxxxxxxxxxx GATT x x x 

X X xAGTA xxxxxxxxxxx TACT x x x 

Computational identification of ncRNA genes is therefore closely related to the identification of buried 

pattens such as pahndromes in a long arbitrary sequence (a few thousand or million bases). This is quite a 

challenging problem. One of the theoretical bottlenecks is that hidden Markov models which worked so well 

for identification of protein coding genes do not work anymore as explained next. 

*Not exactly a palindrome because of the complement operation, but we shall refrain from inventing a new word for that. 
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8.3. Grammars 

In the language of computer science, a grammar is a set of rules which can be repeatedly apphed to obtain 

sequences of letters from an alphabet. The set of all sequences that can be generated by a grammar is called 

the language generated by that grammar. In the early 1950s, Noam Chomsky (a phenomenal computational 

linguist from MIT) classified grammars into four types called regular grammars, context free grammars, 

context sensitive grammars, and unrestricted grammars. The relation between these grammars is depicted 

in Fig. 28. 

unrestricted 

"context sensitive^ 

context free 

vl     regular     jj 

Figure 28. Chomsky's hierarchy of grammars for generating languages. 

Regular grammars have the most restricted production rules and therefore generated a restricted class of 

languages. Context free grammars allow a wider class of production rules and generate a broader class of 

languages. For example suppose the "language" is the set of all paHndromes. Then there is no regular 

grammar to generate these, but there does exist a context free grammar.^ 

We now give a very brief overview of grammars. Good references to this topic include [60] and [62]. A 

regular grammar allows production rules of the form W -^ aW and W -^ a, where W is a nonterminal 

symbol (i.e., we can substitute further for it) and a is a terminal symbol. Consider the example of a regular 

grammar with the following three production rules, where A, C, and T are the terminals: 

W^AW,    W-^TW   W-^CW,    W^A,    W^T,    and   W-^ C. 

Here is an example of a string generated by this grammar by repeated application of the rules in arbitary 

order: 

W^AW^ AAW -> AACW -^ AACTW -^ AACTT 

The language generated by this grammar is the string of all DNA sequences with the base G missing. 

^True, we can find a regular grammax which generates palindromes among other possible sequences. But we cannot find a 
regular grammar which generates only palindromes. 
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A context free grammar allows production rules of the form W -^ a where W is a nonterminal and a is 

a string of terminals and nonterminals. A grammar defined by the following production rules is an example. 

Here A, C, G, and T are the terminals. 

W-^AWA,    W^CWC,    W-^TWT   W^GWG   and   W^e 

where e represents the null string (i.e., nothing). Here is an example of a string generated by this grammar: 

W -^ AW A -^ ATWTA -> ATCWCTA -^ ATCCTA 

In the last step W has been replaced with the null terminal character. Notice that the resulting string is a 

palindrome. The preceding grammar generates the palindromes language. 

If the production rules in a grammar are used with a certain probability attached to eax;h rule, it is 

called a stochastic grammar. There is a result in the theory of computations which says that stochastic 

regular grammars are identical to hidden Markov models. That is, if a class of strings can be generated by 

a stochastic regular grammar then there exists an HMM which generates this class, and vice versa. Since 

regular grammars cannot generate palindrome languages we cannot therefore build HMMs that represent 

noncoding genes. We cannot therefore use HMM theory to identify noncodig genes buried in long DNA 

sequences. Stochastic context free grammars, abbreviated as SCFGs, have been used for this pirrpose and a 

great deal of detail can be found in [4] and references therein. Figure 29 summarizes some of these discussions. 

Recall from Sec. 7 that in order to apply the HMM theory successfully there are three problems that need 

to be solved, and there exist standard algorithms for this, namely Viterbi's algorithm, forward-backward 

algorithm, and the EM algorithm. For the case of context free grammars there are similar algorithms but 

they have much higher complexity [4]. The importance of fast procedures for these arises because of the 

fact that DNA sequences are very long even for "small" organisms. Computational biologists are therefore 

interested in developing faster algorithms for the above problems. Recently Yoon and Vaidyanathan have 

introduce a class of hidden Markov models called context sensitive HMMs [50] which appear to be promising 

for this apphcation while at the same time offering significantly lower complexity. 

Finally, even context sensitive languages have had some apphcations in this context. An example of a 

language that can be recognized by such grammars but not by context free grammars is the so-called copy 

language [4] which can sometimes be useful in describing secondary structures. 
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Figure 29. Application of grammars in computational biology. Regular grammars (stochastic hidden Markov models) 
are useful for identifying protein coding genes whereas stochastic context free grammars (SCFGs) are necessary to 
identify noncoding genes. 

9. OTHER AREAS 

In the past few sections a number of interesting areas were discussed but many were also left out for want of 

space. One of these is DNA computation. The enormous capabilities of the cell (base-pairing, gene-protein 

feedback) can be used to perform miraculously difficult computational tasks. A starting point for the reader 

would be the article by Adleman in 1998 in the Scientific American [59]. Another area we did not discuss is 

DNA sequencing. Many signal processing aspects are involved here, and a flavor can be obtained by reading 

[14] and [22]. An informal discussion of some other areas is given here with appropriate pointers to literature. 

9.1. DNA Microarrays 

An entire issue of Nature genetics was dedicated to the topic of DNA microarrays in 1999. The reader should 

see [53] and other articles therein for an excellent introduction. A good overview also appeared in the IEEE 

Spctrum a few years ago [57], so we will be brief. DNA microarrays are typically grown on a piece of glass or 

silicon substrate chemically primed so that the molecules A, C, T and G stick to specific sites. It is possible 

to raise towers of base sequences about 100 bases long, using photolithography as shown in Fig. 30. In this 

way an entire gene can be "grown" on a few towers. Several genes can therefore be captured onto a single 

DNA microarray chip. 

These chips can be used to observe the expression levels of different genes in the cell as explained in 

Fig. 31. The real advantage here is that we can measure the levels of several genes simultaneously, and as 

a function of time (e.g., cell cycle) and so forth. This gives an enormous advantage to biologists who wish 

to study the dependency of gene expressions on various factors. An example is the 1999 experiment at MIT 

[57] where Affymetrix chips containing 6800 human genes were used to analyze the expression of genes in 
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cancer cells from two types of blood cancer (acute myeloid leukemia and lymphoblastic leukemia). Standard 

pathology examination failed to distinguish the two types but the arrays showed a set of 50 genes that have 

different activity levels in the two cancers. Many examples can be found in the papers published in Nature 

genetics, Jan. 1999, and papers such as [51]. DNA microarrays have serious application in drug design [55], 

antiterrorism [54], and many other related areas. 

glass or 
silicon 
substrate 

Figure 30. The DNA microarray. 

mRNA molecules 

y (c) 

(b) 

A 

Figure 31. Measuring gene expression levels using DNA microarrays. (a) When a gene is expressed, mRNA molecules 
are released from the nucleus, (b) These mRNA molecules are collected, turned into DNA, and tagged with florescent 
dyes, (c) This gene-cocktail is poured onto the gene micro-array. The tagged molecules stick to the portions of genes 
on the array which are complementary to them, (d) If the array is now illuminated with a light source, then the tags 
glow and one can see which genes are expressed. Strength of the glow indicates the amount of gene expression. 

The Affymetrix series started with a modest 1000 genes on chip in 1998. Today, nearly all of the protein 
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coding genes in humans (about 35,000) have gone into a single chip (AHymetrix Inc. and Agilent Technologies 

announced these in 2003). There are some interesting signal processing issues involved in the interpretation 

of data recorded on a DNA array. Some examples can be found in [58] and [51]. 

9.2. The Gene-Protein feedback loop 

We know genes guide the generation of proteins. But proteins to a large extent also control which genes are 

expressed and to what extent. In short, proteins can switch genes on and off. The gene-protein feedback loop 

is what make different cells look and function diflFerently. Cell function depends on a gene-protein network 

interconnected in a highly complex manner. 

The first hint that proteins in cells might be influencing gene expression came from Francois Jacob and 

Jacques Monad in Paris, around 1960. The E. coli bacteria uses lactose sugar and breaks it into simpler 

sugars (galactose and glucose) using the enzyme beta galactosidase. When lactose is absent in the bacterial 

medium the E. coh cell does not produce this enzyme. Otherwise it does! Jacob and Monad suggested 

that this switching ability is due to the presence of a represser molecule. In the late 60s Walter Gilbert 

and Benno Miiller-Hill (from Harvard) found the molecule. The repressors were proteins and this was the 

first proof that there is a closed loop (feedback) system. In recent years, the closed loop relation has been 

described with some success using Hnear first order coupled differential equations called Langevin equations 

[19], and this has been found to be useful in systematic analysis of uncertainties (or "noise") in gene circuits. 

A fascinating account of information processing in genetic circuits can be found in the May 2004 IEEE paper 

by Simpson, et al. [20]. 

9.3. Relation to RNA world 

If proteins are generated by genes and genes are in turn controlled by proteins, then which came first? This 

is similar to asking whether the chicken or egg came first. The fact that ncRNA molecules can perform 

many of the functions of proteins (Sec. 8) answers this question to some extent. There is a theory called 

the RNA-world theory which suggests that the earliest form of life on earth was based entirely on RNA 

molecules. Some of these RNA molecules carry genetic information (like genes in DNA), wheras some act 

as catalysts.^" The article by Orgel in the Scientific American [46] traces the origin of this theory and gives 

an account of some laboratory experiments which demonstrate the feasibility of the RNA-world theory. 

10. CONCLUDING REMARKS 

In this article we have attempted to share the excitement of molecular biology from the point of view of the 

scientist with a signal processing and circuits background. We conclude with the sentiment that genomics. 

^°FUSrA catalysts are called ribozymes rather than enzymes; the latter name is reserved for protein catalysts. 
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and more generally molecular biology have taken a very interesting turn for all of us. For those who did 

not like biology because of the wet smelly labs, there is good news. Molecular biology today involves signal 

processing, computer science, mathematics, and informatics, all coming together beautifully! 
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Box B1. Story of how the DNA double helix was discovered 
The notion that there are specific factors (genes) that are passed on to offspring probably started with the work 
of Gregor Mendel around 1856. Nearly half a century later it became clear due to the work of Walter Button 
(medical student, Columbia University) and T. H. Morgan (also at Columbia), that these "factors" were located on 
chromosomes which were known to contain proteins and DNA molecules. In 1930 the DNA was shown to be a long 
molecule made of the nitrogenous bases A, T, C and G. 

In those days proteins were considered to be the "genes" that carried hereditary information. In 1944 it was 
shown from the experiments of O. T. Avery (Rockfeller Inst., NY) that DNA, rather than protein, carried genetic 
traits. For example when a virus attacks bacteria, it is the viral DNA and not the protein that enters the bacteria 
and changes its behavior. Alfred Hershey and Martha Chase verifed this experimentally (1952, Cold Spring Harbor). 
It was accepted that genes were contained in the DNA; nothing was known about their nature or how they worked. 

In 1944, the famous physicist Schrodinger had written a book entitled What is life, which inspired many young 
scientists. J. D. Watson (born in Chicago, 1928) was among them. He was fascinated from childhood about the 
mystery behind genes. Watson worked on bacteriophages or phages (viruses that attack bacteria) to receive his Ph.D 
at the young age of 22 from Indiana University, and later went to the Cavendish Laboratories (Cambridge, England) 
for further work. The following story is based on his own account of the history of the double helix [9]. When Watson 
saw the X-ray diffraction pattern of DNA from Maurice Wilkins (King's college London), he got interested in finding 
the structure of the DNA — that would be the only way to understand genes. Watson worked with Francis Crick at 
the Cavendish. Earlier, Wilkins had showed the DNA X-ray patterns to a theoretician (Alex Stokes) who said that 
the pattern must have come from a helix. So Watson and Wilkins were sure it would be a helix. But they thought 
it would be a triple helix because of the estimated thickness and density known to Wilkins. 

Around the same time (1951) Linus PauUng at Caltech (an all-time great chemist) established the a-helix structure 
of the protein molecule. Pauling often worked on macromolecule problems by playing with models which looked like 
preschool toys (made from balls, sticks, and glue). The success of this method inspired Watson to try a model building 
approach and hopefully prove that the DNA indeed was a helix. In the mean time Crick and Bill Cohran (also at 
Cavendish) developed a theory for the X-ray diffraction patterns from helical structures (the Crick-Cohran-Stokes 
theory of helical diffraction) and verified that the theory was consistent with PauUng's a-helix and its X-ray pattern. 

Watson and Crick soon built the triple helix model for DNA. Wilkins and his colleague Rosalind PrankUn from 
King's college London visited them and argued that the triple helix was inconsistent with the water content found in 
DNA (according to X-ray patterns obtained by Franklin). This halted all efforts for a while. 

At this time Watson learned that Erwin Chargaff (Columbia University) had shown earUer that the concentration 
of the bases A and T were the same in DNA samples. So were those of C and G. Crick was slowly learning that A 
and T might stick by hydrogen bonding at their flat surface and so might C and G. There were papers by GuUand 
and Jordan showing that there was lots of hydrogen bonding even at low DNA concentrations. By combining this 
with Chargaff's observation Crick reahzed that the DNA molecule might have the bases paired up this way. 

Pauling also got interested in finding the DNA structure, and he too came up with a triple helix model! Watson 
quickly found flaws in the chemistry of the structure: it would make the DNA neutral rather than weakly acidic (as 
it had earlier been shown to be). Watson shared this message with Wilkins and Franklin during a visit. Wilkins also' 
showed Watson the most recent X-ray pictures of DNA taken by Franklin and her student Goshng. These were great 
pictures of the B-form DNA taken with some meticulous effort, and it immediately became obvious to Watson that 
the molecule ought to have a helical structure. (They were studying two forms of DNA, the crystalline (A form) and 
paracrystalline (B form).) He could even deduce later that it implied 3.4 nm periodicity (Fig. 1). 

Watson and Crick then decided to build models for the DNA helix again. This time they tried the double helix 
model first, the joke being that all biological objects came in pairs [9]. From the 1951 work of Alexander Todd 
(Cambridge, England) they knew that the backbone of the DNA molecule was very regular (today known to be the 
sugar-phosphate backbone). Watson and Crick first tried a model where like-bases stuck together {A with A, T with T, 
and so on) by hygrogen bonding. This wrong path was chosen because they were using a wrong chemical configuration 
for the bases called the enol form. The American crystallographer Jerry Donohue at Cavendish convinced them to 
use the so-called keto form in the models. When attempting this, Watson made the most crucial discovery that the 
base A in one strand had to pair with T in the other. Similarly C and G would have to pair. Such pairs are held 
together by hydrogen bonding, and furthermore have similar shape. The resulting double helix was verified to be 
correct stereochemically, in addition to being consistent with X-ray diffraction patterns. It was also consistent with 
Chargaff's earher observation that some bases have identical concentrations in DNA. The resulting model was readily 
accepted by Wilkins, Frankhn, and Pauling.  "A structure as pretty as that just had to be right!" 

Watson and Crick had won the race. Their paper announcing the double helix appeared in the journal Nature 
on April 25, 1953 — a one-page paper reporting one of the greatest discoveries of science! In 1962 when Watson was 
34, he shared the Nobel prize for Physiology or Medicine with Crick and Wilkins. 
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Box B2. Story of how Nature's greatest coding mystery was cracked 

Perhaps the earliest proposal that genes did their work by generating proteins came in 1941 from Beadle and Tatum 
at Stanford. They worked with mold which grew on bread and argued that X-rays create changes (mutations) in some 
genes, affecting the generation of certains proteins (enzymes, to be specific). About ten years later, Linus Pauling 
and Harvey Itano at Caltech had evidence, based on their work on hemoglobin proteins, that each protein might 
have an associated gene. They showed sickle cells were caused by one single change in the amino acid chain (see Fig. 
14). Then the famous physicist George Gamow proposed many possible mappings from DNA to protein, but nothing 
worked for a while. 

The prediction that there ought to be an intermediate RNA molecule between DNA and protein was made first 
by Watson even before the double helix was invented. From this arose the central dogma of biology (Sec. 3) which is 
often credited to Crick who did much to popularize it. In a 1955 private communication to the RNA tie club members 
(a club founded by George Gamow [10]) Crick suggested that there ought to be an adaptor molecule for every amino 
acid, later found to be the tRNA. But the way in which it turns DNA into protein was not clear. In 1959 an enzyme 
called the RNA polymerase was discovered. It was involved in the production of single stranded RJSTA from double 
stranded DNA. The great moment came when the ribosome was discovered at the Massachusetts General Hospital, 
Boston. Here Paul Zamecnik was studying cell-free protein synthesis and could track amino acids radioactively. He 
found that they were being strung together at the sites of small molecules in the cell today known as the ribosomes. 
Zamecnik then worked with Mahlon Hoagland and showed that before these amino acids were assembled into a chain 
at the ribosome they were attached to some small RNA molecules. Watson and Crick pointed out that these ought 
to be the adaptors they were looking for, today known as the transfer RNA or tRNA molecules. The messenger 
RNAs (mRNAs) were verified to be the templates for proteins synthesis only in 1960. Details of the complete story 
(starting from the DNA through mRNA to protein) was worked out at Harvard, Caltech, and Cambridge (Watson, 
Matt Meselson, Francois Jacob, and Sydney Brenner). 

The code that translates portions of DNA into specific sequences of amino acids came up next. Since there are only 
four choices for bases in DNA, a single base is not enough to specify one out of 20 amino acids. A sequence of three 
consecutive bases has 4^ = 64 combinations, so Sydney Brenner proposed that the trancription from the 4^1etter DNA 
to the 20-letter protein takes place through triplets of bases (now called codons), each triplet specifying one amino 
acid. In 1961 Brenner and Crick at the Cambridge Labs then proved this experimentally, by deleting or inserting 
base pairs in DNA and seeing the effect on the resulting amino acid sequences. This was the first experimental proof 
of the existence of codons. The ability to force artificial mutations (insertion, deletion and alteration of bases) was 
crucial to these experiments. Also crucial was the fact that protein synthesis could be performed outside the cell in 
a test tube using a good supply of ribosomes, amino acids, transfer RNAs and a source of energy. Such a system 
would manufacture the proteins that correspond to an mRNA introduced into the test tube. 

In 1961 Marshall Nirenberg from the National Institute of Health revealed at a conference in Moscow that the 
triplet TTT produces the amino acid phenylalanine (Phe or F). He found this by using the RNA molecule UUUUUU.... 
(called poly-U) in a cell-free synthesis of amino acids. Thus l/64th of the genetic code had been cracked. There still 
remained 63 triplets of bases for which the resulting amino acids had to be found out. This was completed in 1966 
by Gobind Khorana at U. Wisconsin, and the complete genetic code had been cracked! The results were presented 
at the 1966 Symposium on gentic code in Cold Spring Harbor. The Nobel prize for this work went to Khorana, 
Nirenberg and HoUey in 1968. 
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